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Abstract--Linear stability of horizontal gas-liquid stratified flow was solved using a tau spectral method 
that is valid for all wavenumbers. Pressures of 0.1-10 atm and liquid viscosities of  1~500 cP were examined. 
Comparison of  these results with Kelvin-Helmholtz, integral momentum and rigorous long wave 
expansion approaches indicates that the approximate models do not correctly predict the point of  neutral 
stability. The discrepancies in the models are due to more than differences in the calculation of  interfacial 
perturbation stress components and differences in the base states. Stability predictions that include gas 
phase turbulence, as modeled with either a polynomial velocity profile or with imposed boundary 
conditions obtained from measured pressure and shear stress variations, are similar to laminar results if 
the interfacial stress and liquid depth are the same. The long wave stability boundary is found to correlate 
well for different channel height, density ratio and viscosity ratio, using a gas superficial Froude number 
corrected with a square root of  density ratio and a liquid superficial Froude number. For gas-liquid 
channel flow waves that grow fastest typically have dimensionless wavenumbers of  order unity. Their 
growth rate scales as a corrected gas Reynolds number to the first power. If the gas-liquid depth ratio 
is less than approximately one, long waves can be unstable before moderate wavelength waves. Under 
conditions where unstable moderate wavelength waves appear within a couple of  meters, it can take 20-50 
times this length for slowly growing long wavelength waves, which can destroy regime stability, to appear. 
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1. I N T R O D U C T I O N  

To design and operate pipelines or process equipment, knowledge of the flow regime is essential 
because important flow characteristics such as average and fluctuating pressure drop, steadiness 
of throughput and uniformity of wall cooling or heating vary greatly depending upon the regime. 
Unfortunately, prediction of flow regime is a difficult problem that has not yet been solved. Current 
procedures include use of regime maps (e.g. Mandhane et al. 1974) or general calculation 
procedures based on transitions from stratified flow (e.g. Taitel & Dukler 1976). Maron & Brauner 
(1990), Barnea (1991) and Crowley et al. (1992, 1993) use versions of averaged momentum 
equations to predict transitions from stratified to slug and annular flow. The flow maps are limited 
because they are plots of dimensional variables and it can be seen from Lin & Hanratty (1986), 
if the pipe diameter is changed, the boundaries move--as would be expected--on dimensional 
grounds. Three issues are important about stability procedures. First, because all the methods 
employ approximate equations (e.g. inviscid, modified inviscid or one-dimensional average 
equations) it is not clear that the equations are predicting the stability of a real disturbance. The 
second issue concerns the consistency of the models. For example, Barnea's (1991) equations are 
one-dimensional so that the inherent assumption is that wavelength is long compared to the phase 
depths. However, these equations predict that the fastest growing wavenumber may be of order 
one--which seems inconsistent. A third question is whether the observed transitions are caused by 
linear instabilities. 

Use of approximate equations for calculating stability has been justified because even the 
linearized Navier-Stokes disturbance equations for laminar flow are difficult to solve. Turbulence 
adds to this complexity as does the perception that it is necessary to calculate the linear stability 
of a secondary (e.g. long wavelength) disturbance when the interface is covered by moderate 
wavelength waves, to predict regime transitions. In recent years, improved numerical and analytical 
techniques make it possible to obtain solutions to the complete differential problem in the form 
of the Orr-Sommerfeld equation. Consequently, it would be interesting to examine the predictions 
of the exact equations and compare them to the predictions of approximate models. 
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Kordyban & Ranov (1970) and Taitel & Dukler (1976) used modifications of Kelvin-Helmholtz 
instability to predict slug formation. The most unstable wavelength for Kelvin-Helmholtz 
instability is about 1.7 cm for air-water and is thus not a long wavelength wave. Lin & Hanratty 
(1986) assumed that slugs form from continued growth of long wavelength waves and used a linear 
stability theory that employs integral momentum balances to predict the onset of slugging. More 
recent papers by Andritsos et al. (1989) and Fan et al. (1993) suggest that the picture is more 
complicated. They observe conditions where moderate waves appear to grow rapidly into slugs and 
other conditions where the wavelength has doubled at least once and grown with distance before 
a slug is formed. As a consequence, accurate prediction of linear behavior for all wavenumbers 
is needed. 

Linear stability analyses based on the Orr-Sommerfeld equation have been done for the case of 
unconfined flows by Valenzuela (1976), Kawai (1979) and Gastel et al. (1985). Gastel et al. (1985) 
shows that while the assumed shapes of the turbulent liquid and gas velocity profiles affect the 
results, linear predictions of growth rates match the experiments rather well. Linear analyses 
relevant to two-layer channel flows include Cohen & Hanratty (1965), Craik (1966), Yih (1967), 
Hooper & Boyd (1983), Hinch (1984), Hooper  (1984), Renardy (1985), Yiantsios & Higgins (1987) 
and Su & Khomami (1992). Hanratty & McCready (1995) report that the spatial growth rates of 
Sangalli et al. (1992) match linear predictions within the accuracy of the data. Jurman et al. (1992) 
find that measured wave speeds match the linear predictions. These studies provide important 
physical insights and confirm its validity at describing quantitative aspects of the linear 
growth/decay process. 

In this paper, we examine the linear stability of stratified channel flow using the Orr-Sommerfeld 
equation and complete two-phase boundary conditions. Calculations are done at conditions and 
fluid properties typical of horizontal gas-liquid flow. We examine the long wave limit, where the 
problem can be solved analytically using a perturbation approach, and the entire wavenumber 
range using a numerical spectral approach. Our primary goals are to obtain some general results 
that can be used without doing complete calculations and to gain insight into important physical 
effects. It is found that moderate wavelength waves are unstable first for most conditions; a 
correlative procedure for determining the growth rate of the fastest growing waves is introduced. 
The long wave stability boundary for different conditions is found to correlate reasonably well 
using density corrected gas and liquid Froude numbers. The influence of pressure on the growth 
rates and stability boundaries is discussed. The effect of turbulence in the gas phase is investigated 
using a polynomial profile for the gas (Pai 1953) and through the use boundary conditions on the 
liquid that are obtained from stress correlations for turbulent flow over solid waves. It is found 
that the primary effect of turbulence is through alterations in the base state; for turbulent flow, 
the pressure drop and interfacial shear are higher than laminar flow for fixed gas Reynolds number. 
Furthermore, both the one-dimensional momentum model and the Kelvin-Helmholtz models differ 
substantially from the predictions of the full Navier-Stokes equations. 

2. T H E O R Y  

Waves in channel flow exhibit spatial growth. However, as discussed by Hanratty & McCready 
(1995), it is usually sufficient to consider temporal growth and convert this to spatial growth with 
the group velocity if necessary. Far from neutral stability there may be some quantitative error, 
but the qualitative behavior will be similar. 

2.1. Full  equations 

The flow situation of interest is shown in figure I. The calculations will be given for a 
two-dimensional flow although a Squire transformation (Blennerhassett 1980) is possible to 
account for the behavior of three-dimensional disturbances. The equations and boundary 
conditions for a two-layer laminar stratified flow in a channel have been given by Yih (1967), 
Blennerhassett (1980), Yiantsios & Higgins (1988) among others. In terms of the disturbance stream 
function (using Blennerhassett's notation) these become, 

4~ = q~' = 0(~y = 1, [la] 
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¢ = ~ ,  @ y = O ,  [lb] 

u~,¢ u ~  
¢" (Ub(0)--C) (Ub(0)--C)' @y = 0 ,  [lc] 

q b " + k 2 ¢ = p ( q ~ " + k 2 ~ ) ,  @ y = 0 .  [ld] 

1 ikc~ (F + k2T) 
(~b '"-  3k2~b') + ik(qbu~ - ¢'(Ub(0) -- C)) 4 (Ub(0) C) -- R 2 

i p k ¢  F 
PR ( ~ ' '  - 3k2¢') + p i k ( ¢ U ~  - q~'tr) + (Ub(0) -- C) R 2' @y = 0, [le] 

i k ( u  b - -  c ) ( ~  b"  - k 2 ¢ )  - i k U ~ q  b = R - t ( ~  iv - 2k2~ " + k 4 ¢ ) ,  for 0 ~<y ~< 1 [If] 

i k ( U b - C ) ( ¢ " - k 2 ¢ ) - i k u ' ~ ¢  = ( v R ) - I ( ¢ i V - 2 k 2 ¢ " + k 4 ¢ ) ,  for - 1 / d < y  ~ o  [lg] 

¢ = t ~ ' = 0 ,  @y = - d - ' .  [lh] 

The viscosity ratio is p = P2/P~, the density ratio is p = P2/Pl,  the ratio of kinematic viscosities is 
v, a --- Ub(0) -- C and the depth ratio is d = Dt2/D~. The average dimensionless velocity profiles are 
Ub for the liquid and Ub for the gas; the wavenumber is k which is made dimensionless with D: t. 
In these equations, ¢ and • are the disturbance stream functions defined from, 

U = ~ ' ( y ) e x p [ i k ( x  - ct)], u = ¢ ' ( y ) e x p [ i k ( x  - ct)], 

V = - ikeP ( y ) e x p [ i k  ( x  - ct)], v = - i k ¢  ( y ) e x p [ i k  ( x  - ct)], [2] 

where lower case variables refer to the lower phase and upper case variables refer to the upper 
phase. The term U is the x direction disturbance velocity of  the gas, which is the primary flow 
direction and V is the y direction velocity. The height is made dimensionless with the upper phase 
height, and the origin is located at the interface. The characteristic velocity is a mean velocity 
defined as 

, ( i  o ) Vtm= t t u~ dy t + Utb dy* [3] 
Dj + D 2  o', do 

where y* is the dimensional y direction, u~, is the dimensional liquid velocity profile and U*b is the 
dimensional gas velocity profile. The parameters R, F and T are defined as 

t t 
R - - - , -  UmD2 [41 

V2 

F - g D  ~3 
v~ ' [5] 

SD~ 
T = P~V ~" [6] 

0 

IJMF 21/51B 

Figure 1. Diagram of flow configuration for concurrent gas-liquid flow. 
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The Reynolds number, R, is defined similarly to other studies but F and T are essentially Froude 
and Weber numbers multiplied by R 2. The wave speed is c, g is the gravity constant and S is the 
surface tension coefficient. 

No analytical solution to the eigenvalue problem given by these equations has been found, and 
because the maximum growth rate occurs at k = O(1) it is usually not possible to employ an 
expansion in either k, l /k  or 1/kR to obtain an analytical solution that is useful for determining 
the maximum growth rate. Consequently, we have solved the eigenvalue problem using a 
Chebyshev tau spectral technique similar to Su & Khomami  (1992) that was implemented 
in Mat lab" .  To eliminate the infinite eigenvalues that occur because the eigenvalue does not 
appear in all the equations, we made use of an algebraic reduction after employing the 
spectral expansion. To remove the spurious modes (Orszag 1971) that arise because of discretiza- 
tion of the third and fourth order derivatives, we adapted to our problem the more sophisticated 
modified tau method proposed by Gardner  et al. (1989), which consists of a factorization of the 
differential operator, and successive elimination of the additional unknowns that are introduced. 
The method represents an alternative discretization of the differential operator resulting in a 
different algebraic eigenvalue problem that is resistant to the appearance of spurious modes. 
The code then converged for all conditions and provided the speed and growth rate for all 
eigenvalues. 

2.2. Long wave expansion 

Stability of long wavelength waves has been used as a criterion for slug formation by Lin & 
Hanrat ty  (1986). This idea is very plausible because even though non-linear effects can transfer 
energy from moderate wavelength to long waves (Jurman et al. 1992) it is unlikely that a wave that 
is long enough to grow into a slug, could reach a large amplitude unless a linear process is also 
involved. Blennerhassett (1980) solves the long wavelength stability problem up to order k ~ 
analytically using an adjoint operator method. The long wavelength results presented below are 
obtained from his paper for laminar flow and by modifying the average profile when a polynomial 
profile is used. Note that for flows of interest, a theory accurate to O(k L) corresponds to a wave 
that could be 10 m or longer which may not have any relevance for an actual flow. However, if 
long wave theory predicts instability, it is likely that all waves up to the moderate wavelength region 
are unstable. Figure 11 shows that this is not always true. If long wave theory predicts stability, 
generally the growth rate gets more negative as k increases because the wave speed is increasing. 
The speed increase occurs until the liquid depth wavelength ratio becomes of O(0.1). Once the 
speed stops its rapid increase with wavenumber, the growth rate usually increases and wave modes 
can become unstable. Considering these arguments, long wave theory ordinarily gives useful 
information about realistic waves. 

2.3. Macroscopic momentum equation 

Lin & Hanrat ty  (1986) give the integral momentum balance equations (or one-dimensional 
equations) for a two-layer channel flow and show how to obtain the neutral conditions. Crowley 
et al. (1992) give similar equations and procedures for calculations of regime transitions from 
stratified to annular flow and slugging, Equations of  this type are obtained by averaging over the 
y direction and as a result will not exactly represent the flow fields. They are intended to predict 
disturbances that are long compared to the channel or height. However, it is not clear how close 
to the full differential equations these predictions will be, nor is the best procedure for comparing 
the two approaches obvious. To make this assessment, they are compared below using both 
dimensional plots and a dimensionless plot. 

2.4. Kelvin Helmholtz model 

Kelvin-Helmholtz (Drazin & Reid 1981) stability model assumes that the flow is inviscid and 
therefore LaPlace equations for the potential function govern the flow field. Because the velocity 
profiles are fiat, there is a discontinuity in velocity at the interface. Instability is predicted 
when the Bernoulli effect is large enough to overcome the restoring forces of gravity and surface 
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tension. The dispersion relation for this model when the effect of  finite channel size is included 
is 

Pl ui coth[k*DI] + P2 0*2 coth[k*D~] 
C - -  

p, coth[k*D~] + p: coth[k*D~] 

i 
± k*(p, coth[D[k] + P2 coth[D~k]) * [ - k ' 2 P l  P2 co th[k tDI]co th[k tD~] (u~  - 0~)  2 

+ k t g ( P ,  - P2)(PI coth[ktD~] + P~ coth[k*D~]) 

+ Sk*3(Pl coth[k~D~] + P2 coth[k*D~])] I'n. [7] 

In this equation 0~ is the average dimensional gas velocity, ti~ is the average liquid velocity and 
k t is the dimensional wavenumber. This agrees with Barnea's (1991) inviscid analysis only if the 
wavenumber goes to 0. The Kelvin-Helmholtz model predicts that for air water flows at conditions 
close to neutral stability, the most unstable wavelength is 1.7 cm--which is neither short nor long 
for typical size conduits. 

2.5. M e t h o d s  f o r  dealing with turbulent f l o w  

Most process flows have at least one phase that is turbulent. In this section we consider two ways 
for approximating the effect that gas phase turbulence will have on linear stability behavior. The 
first is the "divided attack" suggested by Benjamin (1957) and implemented for a stability problem 
by Cohen & Hanratty (1965) and Craik (1966). It involves solving the Orr-Sommerfeld equation 
in the liquid phase and includes the effect of gas flow through the pressure and shear stress 
boundary conditions. The gas phase is solved separately as flow over a solid wavy surface. Hanratty 
(1983) suggests that correlations of measurements of pressure and shear variations for turbulent 
flow over solid wavy surfaces can be used. Using boundary conditions from stress correlations for 
a solid surface has been justified by the small density, 1/890, and viscosity, 1/56, ratios for air-water. 
The magnitude of the error in doing this has not been established and it cannot be obtained from 
analytical expressions for the eigenvalue problem (e.g. [1]) because the limit as /~---~0 is not 
equivalent to the divided attack. 

This method is implemented here by solving the Orr-Sommerfeld equation in the liquid phase 
with a tau spectral method and using the stress correlations for model D* given by Abrams (1984) 
to predict the pressure and shear stress boundary conditions. The D* model provides a good fit 
to measured magnitudes and phase angles of the shear stress and pressure fluctuations for turbulent 
flow over solid waves. Because no governing equation for the gas phase is used, it is necessary to 
specify friction velocity, v*, liquid Reynolds number Re = D ~ / v ~ ,  and D~, the liquid depth, as 
input parameters (even though in the two-layer problem only two of them are independent). 

To examine the inherent accuracy of the divided attack or imposed stress approach, it is possible 
to solve for laminar flow over a solid wavy wall, and then use the calculated stresses in the equations 
for the liquid phase. This problem can be solved for the long wave limit using a perturbation 
method; it gives an unambiguous comparison of the exact two-phase solution with the divided 
attack for linear stability. We have also implemented the divided attack in our numerical code so 
that the use of turbulent stresses can be compared to laminar stresses for all wavenumbers. 

The boundary conditions are formulated as shown by Cohen & Hanratty (1965) or Craik (1966). 
For the upper phase, the governing equation and boundary conditions are expanded in powers of 
k a s  

= ~oho + khi q~l + " " " [8a] 

h = ho + kh~ + • • .. [8b] 

For k ° the no slip boundary conditions are 

4~0 = @0 = 0, @y = 1 (fiat wall), [9a] 

~0 = 0, ~0 + U~ = 0, ~!y = 0 (wavy wall by using domain perturbation), [9b] 
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and the governing equat ion is 
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4,~ = o. 

For  k ~ order,  the bounda ry  condit ions are 

q~n = ~ = 0, @y = 1 (flat wall), 

q~ = 0, q~'~ + U(, = 0, @y = 0 (wavy wall), 

and the governing equat ion is 

R-lcbilv = i ( U b  ~ - -  U~  ~ o ) .  

~o(Y) = - 6 U d y  - 2Y 2 +Y3)  

These are easily solved to obtain 

and 

3i 
e b b ( y )  = - ~  U r y ( y  - -  1)2(70i + R U r y  - -  R U r y  2 - 3RUry 3 + 2RUry4).  

[lo] 

[11] 

[12] 

[13] 

[14] 

[15] 

49oC, 
M b (0 )  j [ / -  C O ((~ PI' -[- U ~ ( O ) )  491 -[- U b ( ~ _  CO J 

i(1 -- P)49o F 
Ub(0) - Co R 2 

_ - p  ( 4,0c, ) ~ , , _  ip490 
R ( U b ( O )  __ CO ) 491q Ub~ZCO ildb(O)--Co) (-(~6Ub(O)~-(~OUb(O)) 

with the governing equat ion being: 

i(Ub - -  Co)49'o' - -  iu~ 49o = (v R)-'49i, v • 

[2o1 

@y = 0  [21] 

@y = 0 [221 

[23] 

490c, ) u ; ( 0 )  49, + 
4~ ',' Ub-(0)-- Co ub (0) -- Co 
49~" 
_ _ _ _  i ( 490 (Ub(0 )  - -  C0) - -  490U•(0)) q 
v R  

49, = 49~ = 0 @ y  = - l / d  (flat wall), 

No te  that  the right sides of  [1 8a] and [1 8b] differ f rom the expansions of  [1] given in Blennerhassett  
(1980). Also note  that  the interracial velocities are not cont inuous with this model.  At k n order we 
have 

49~v = 0. [19] 

The governing equat ion is 

49(Y) = 490(Y) + k49~(y) + . . - .  

The  bounda ry  condit ions at k ° order  are the no slip condit ions 

49 o = 49 o = 0 @ y  = - 1 / d  (flat wall), 

and shear stress and pressure match,  

49ou;(O) ~49o 49~ - ( ~  + u~(0)), 
Ub(O ) - -  C O Ub(O) - -  C 0 

/~49o 
49;;' - 

ub (0 )  - Co 
q~o" @y = 0 (pressure match).  [18b] 

@y = 0 (shear stress match),  [18a] 

[171 

[161 

The  term /dr is the ratio of  the average gas to the average liquid velocity. 
To  solve the eigenvalue p rob lem in the liquid for the imposed stress model ,  the expansion for 

the liquid dis turbance s t ream function is 
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These equations can be solved analytically to obtain Co, which is 

12pUt 6pUt 3#Ur 3ff~ 
c 0 -  d ~ +  d--- 5- ~ - -  -t , .  [24] 

Urn 

The expression for c~ was obtained using a computer algebra program and is quite long and thus 
is not printed here. 

A second procedure that is used is to model the gas phase velocity profile with a polynomial 
as was done by Pai (1953) and Brodkey (1963). Kadambi (1983) used polynomial profiles to predict 
the base state for a two-layer flow where both phases are turbulent. Because of his method of 
non-dimensionalization, it is difficult to obtain the information necessary to evaluate his ex- 
pressions numerically so we have used a slightly different procedure for determining the base state 
profiles. The liquid is assumed to be laminar and will have a parabolic profile. The gas phase will 
be turbulent so following Brodkey (1963), an expression for the eddy viscosity, ~/v2 is 

E(y) - s  
v2 al + n a 2 ( y  - ½)2, 2 [25] 

where s is the ratio of the shear stress for turbulent flow to the value for laminar flow with the 
same maximum velocity, a~ and a2 are constants that were obtained from the boundary conditions 
and n is the empirical value of the polynomial order. If [25] is used, the principal assumption in 
applying the polynomial profile to a two-layer flow is that the eddy viscosity is symmetric. This 
differs from Kadambi (1983) who assumed that the velocity profiles were symmetric, but that a 
virtual interface existed. The eddy viscosity is used in the governing equation for the gas phase to 
give 

cqP c~ ( 3 U2'], [26] o = - a N +  ~ ( ~ ( y ) + v 2 ) ~ - y /  

which is then solved with the boundary conditions of no slip or flow through the solid walls and 
velocity and shear stress match at the gas liquid interface to give the liquid profile 

ue(y) = Ue0 + UL,y  + UL2Y 2, [27a] 

where 

Uc0 = (--4(1 + d ) p s ( s  --  2n))/A [27b] 

Ucl = ( - 4 p s  ( - 2d2n  + d2s  - p s  + 2 1 m s ) ) / A  [27c] 

uc2 = - 4 p s  [27d] 

and the gas profile 

where 

and 

g G ( Y )  = U G O +  U G l y  -'l'- gG2y2  + gG2ny(2n) q - gG2nlJ (2"-I) 

Uco = - ( -  2d2n  + d2s  + d p s  - 4 p n s  - 6 d p n s  + 212s 2 + 2 d p s 2 ) / A ,  

U~ = ( -2(1  + d ) # ( -  1 + 2n)(n - s ) s ) / ( ( n  - 1)A), 

UG2 = ( - - n  + s ) / ( n  --  1), 

UG2 . = (1 --  s ) / (n  --  1), 

UG2., = (--2(1 + d ) ; n ( -  1 + s)s)/((n - 1)6), 

[28a] 

[28b1 

[28c] 

[28d] 

[28e1 

[28f1 

A = d ( 2 d n  - ds  - p s  + 2 p n s ) .  [28g] 
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Figure  2. Two-phase  velocity profiles as predicted us ing the po lynomia l  profile for the gas phase.  The  gas 
flow is l aminar  at R G = 2000. 

Figure 2 shows the profiles as a function of gas Reynolds number, Rc = O~D~/v~ for fixed RL. 
The values of  s and n are given by Brodkey (1963) as, 

n = -0 .617  + (8.211 x 10-3)R~ n6, [29] 

s = 1 R c < 2040, [30a] 

s = 2.417 × 10-12R~ st , 2040 ~< R c ~< 2800, and [30b] 

s = 0.585 + (3.172 × 10-3)R~ 833, RG > 2800. [30c] 

These predict velocity profiles reasonably well for single phase flow. How well they work for a 
gas-liquid flow is open to question, but they are included here to show the effect of  a simulated 
turbulent velocity profile. Because the gas-liquid interface will experience lower stress than a solid 
wall, it is likely that the polynomial profile will predict a more severe effect of turbulence (while 
ignoring possible dynamic effects) than actually occurs, so it is useful as a limiting case. 

3. R E S U L T S  

The first question that arises is how to compare the results of  different models. The results of 
this paper will affirm the importance of the two-layer base state on stability behavior. Interfacial 
shear is the driving force for instability and liquid depth tells how the fluid will respond. Thus for 
fixed fluid properties and channel depth a plot of  interfacial friction velocity, v* (where v* is the 
liquid friction velocity defined as x/v, ~U*b(O)/t~y*), versus liquid depth, D~, shows how the models 
behave based on the mechanism of stability. The effect on stability of  different base states for 
different models is largely removed. Figure 3 gives stability boundaries for the two-layer laminar 
longwave analysis, our polynomial gas-laminar liquid long wave analysis, Kelvin Helmholtz ([7], 
using laminar stresses to get v*) (Lin & Hanrat ty  1986; Crowley et al. 1993) and a two-layer 
laminar analysis that is showing the short wave boundary. Several observations are in order. 
Comparing first the two laminar- laminar  results, short waves are unstable at lower interfacial 
friction than long waves. This is consistent with experimental observations (e.g. Hanrat ty  & 
Hershman 1960; Cohen & Hanrat ty  1965). However, it is interesting that for sufficiently large liquid 
depth, the lines cross and long waves are unstable first. A second observation is the lack 
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10 T r r T "i- I 
..... lamirlar-laminar short waves - -]1 
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3 

t 
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Figure 3. Linear stability boundaries for different models on friction velocity liquid height coordinates. 
Stable regions are below the curves, unstable regions are above and to the right of  the curves. This plot 

is intended to remove the effect of  different base states and specific value input constants. 

of agreement between Kelvin-Helmholtz and laminar short waves. The reason is that Jeffrey's 
mechanism (Hanratty 1983), which through the pressure fluctuation in phase with the wave slope 
leads to reinforcement of the orbital motions of traveling waves, is completely absent in the 
Kelvin-Helmholtz analysis. Note that the interfacial friction velocity drops at low film thickness 
because there is an impending transition to Craik's (1966) slow waves that exist on thin layers. 

Next the macroscopic models will be examined. On these coordinates, all the macroscopic models 
predict about the same results. The differences that they exhibit in other coordinates (e.g. see figure 
4), are due largely to changes in the base state. Even i f  f / f ,  (the ratio of  the interfacial friction factor 
to the interfacial friction factor for a smooth interface) is increased to 2- -a  value which has been 
shown by Lin & Hanratty (1986) to match slug transition data, there is little change in the 
prediction in these coordinates. The most important comparison from the standpoint of regime 
transition is the macroscopic models with the differential longwave analyses. It is seen that there 
is a disagreement by a factor of 2-3 in the friction velocity required to cause instability at small 
height; this difference decreases somewhat with increasing height. Consequently it can take 
substantially more interfacial stress to cause instability for one-dimensional equations as compared 
to the full differential equations. The polynomial profile gas profile that simulates the effect of 
turbulence is very close to the laminar result when plotted in this figure. Of course the gas flow 
rate required to cause the stress is much lower if the flow is turbulent compared to laminar so that 
the polynomial model also changes stability primarily through changes in the base state. 

To show how the comparison of different models changes with coordinate axes, the long wave 
models and Lin & Hanratty (1986) are plotted in figure 4 on a Mandhane et al. (1974) plot as liquid 
superficial velocity, USL versus gas superficial velocity, USG. This provides a comparison in terms 
of  flow rates of  the two phases. In this figure the friction factor ratio, f/J~ causes a large change 
in the prediction. Lin & Hanratty 's (1986) laminar liquid model predicts instability at lower flow 
rates than the turbulent liquid model. The macroscopic turbulent liquid model still differs 
substantially from the differential laminar model, but the macroscopic laminar model is close to 
the differential laminar model. However, this agreement is coincidental because when the liquid 
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Figure 4, Stability calculations and slug transition data shown in Mandhane coordinates for a 2.54 cm 
channel. Waves are unstable above and to the right of the curves. 

viscosity is increased to 20 cP, the differential and macroscopic models are again very different. 
At low USG, the macroscopic curve is below the differential curve; above USG = 50cm/s, the 
differential model is below indicating instability at lower Use. The polynomial gas model shows 
the expected effect of turbulence, which is that the flow is unstable at gas flow rates lower than 
laminar. Note the point at which the gas Reynolds number reaches about 2040 is where the 
polynomial and laminar models intersect. Also shown on this plot are slug transition data of Lin 
& Hanrat ty (1986). It is seen that these occur in the range of unstable waves as predicted by our 
differential models. It is gratifying that the slugs occur in the unstable region. However, it should 
be emphasized that linear theory predicts only that long wave disturbances are unstable and will 
grow, it cannot predict if large amplitude disturbances will be observed in a finite length flow 
system. 

Figure 5 shows laminar long wave stability on a liquid versus gas Froude number plot with 
a(pG/pL)  ~/2 correction for the gas. These axes are essentially the same as those recently introduced 
by Crowley et al. (1993). The exponent on the density correction was also suggested by Andritsos 
et al. (1989). For the two-layer laminar calculations the channel height, gas pressure and liquid 
viscosity are varied. These calculations produce two distinct regions. One is a nearly constant 
abscissa ~- 0.3, which corresponds to liquid depths that are much less than 1/2 of the channel height. 
In this region, instability is caused by a sufficient degree of gas shear. Note that even for 
/~L--623 cP, this value does not move much. Evidently, the density-corrected Froude number 
captures stability behavior in this region as the different conditions collapse very well. The other 
region is ordinate ~0.1, about which there is considerable scatter. This is the thick film region 
where the liquid depth may approach the entire channel height. Results from the polynomial profile 
are not shown on this plot but they would have the same horizontal asymptote, because the liquid 
is laminar. The vertical asymptote would move to about 0.1 with little change in the scatter of the 
lines. The comparison of the Crowley et al. (1993) calculations with laminar long wave stability 
is similar to the comparison of figure 4. The models converge or cross for high liquid flows where 
the gas is laminar. As the gas flow rate is increased, the laminar model shows a significantly lower 
value of the gas flow at transition. 
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The disagreement between the differential models and the macroscopic equations is troubling 
although not surprising given the significant simplification of  the governing equations that is 
involved. Hanrat ty  (1983) and Lin & Hanrat ty  (1986) emphasize the importance of  predicting the 
interracial perturbation stresses. They decompose the interfacial pressure and shear stress into real 
and imaginary components.  The real components PSR and TSR are in phase with the wave height; 
the imaginary components,  Psi and vSl are in phase with the wave slope. In our notation, the 
dimensional perturbation pressure or shear stress can be retrieved by multiplying these by 
a*D~/(p 1 fiT2), where a* is the wave amplitude. Figure 6 shows perturbation shear stresses from the 
laminar- laminar  two layer, laminar divided attack, macroscopic momentum equations of  Hanrat ty  
(1983) and model D* from Abrams (1984). Note that in the laminar- laminar  long wave stability 
calculation, the first two powers in k are involved. Thus both the magnitude and limiting slope 
of  the stress components should be compared. In the long wave limit it is seen that all the models 
agree for the perturbation shear stress so it is not likely to be the reason for the disagreement in 
the calculations. However, the macroscopic model is not close to the two-layer laminar result for 
either the real or imaginary component  of  the pressure. The sign of the slope and value of PSR are 
different. The different values of  perturbation pressure can certainly explain part  of  the disagree- 
ment in the stability boundaries, but the differences in the equations will also contribute. 

The stresses from Abrams are included to show values for measured turbulent flow over a solid 
surface. They could be used in wave stability calculations if two basic questions could be answered. 
First, what is the error in the divided attack for different values of  parameters? Second, what 
happens to the validity of  the turbulent flow data as the wavelength becomes comparable or larger 
than the channel height? Note that the wavy surface data were taken under conditions where the 
presence of a top wall was thought to be unimportant.  The first question is addressed by comparing 
the stresses for the two-layer laminar flow with the divided attack laminar. Note that the shear 
stresses are close but there is some quantitative disagreement. The values for PSR and Psi are almost 
identical until k id  gets to about  unity. In the range of  l 8 they differ somewhat and note that Ps~ 
exerts a very strong influence on the growth rate. 

It is difficult to draw firm conclusions about the validity of  the divided attack from the stresses. 
Thus in figures 7(a) and 7(b), long wave stability boundaries are constructed in RG versus RL 
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Figure 5. Dimensionless plot of long wave stability. Waves are unstable above and to the right of the 
curves. 
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coordinates for different viscosity and density ratios. Figure 7(a) shows that for the air-water case, 
the density and viscosity ratios are small enough that the divided attack and two-layer laminar 
agree. However, as the viscosity ratio is increased towards unity, significant disagreement exists and 
it becomes larger as RL is increased. Figure 7(b) shows similar behavior for a changing density ratio. 
The useful result from this figure is that for gas-liquid flows, the long wave stability can probably 
be explained using the divided attack which could allow use of either elaborate turbulent models, 
measured data from solid waves or numerical simulations of gas flow turbulence in the stability 
calculations. 

It is interesting to examine the divided attack over the entire wavenumber range. Figure 8 shows 
a comparison of the growth curves for a two-layer laminar flow, the divided attack model using 
the turbulent stress correlations of Abrams and a laminar gas divided attack model (the full 
wavelength numerical version of [8]-[23] above). The liquid Reynolds number is 740 and laminar 
values for Rc are 1965, 3516, 4558 and 6426. Note that the actual turbulent Rc for the last three 
will be smaller than the laminar values. The fluids are air-water and in all cases the laminar base 
state is used to calculate the height and friction velocity. It is seen that, as expected for the long 
wave region, the differences in the growth rate between the two-layer laminar and the divided attack 
laminar are very small. For kid greater than unity, the divided attack consistently predicts a higher 
growth rate for the entire range. While the difference is not due entirely to the stresses, Ps~ is higher 
for this range for the divided attack. The magnitude of the growth of any particular wavenumber 
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is not much different for the divided as compared to the full solution and it is not clear if this 
difference would be detectable in experiments. However, the integral of the growth rate over all 
frequencies can be quite different and it is possible that this could lead to differences in the energy 
in the entire wave spectrum. The third set of  curves that use Abrams' stresses reveal new 
information. First there are only minor differences in growth rates for the laminar and turbulent 
divided attack if k /d  is greater than 2. This suggests that turbulence is having only a minor effect 
on the stability calculation. For  k /d  below unity significant differences occur. For the three highest 
RG values, Abrams' stresses predict stable long waves while the laminar models predict unstable 
long waves! This is a serious discrepancy. While this could be due to turbulence, these values of 
k /d  are below the wavenumber region where the turbulent data show large differences from his 
laminar predictions. It is likely that the error is due to the wavelength becoming long compared 
to the gas height. The values of  k/d  where the error occurs are well within the ¢t ÷ ( = 2~zv2/~v*, where 
v* is the gas friction velocity defined as x/v23U~(O)/~y~ and 2 is wavelength) values of  the 
measurements so this is not the problem. 

From the results above, it is expected that laminar-laminar stability calculation can be used to 
provide insight into turbulent flows if the liquid height and friction velocity are the same. Thus 
this calculation procedure will be used to examine several questions related to linear wave growth. 
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Figure 8. G r o w t h  rate curves for the air water system comparing  the two-layer laminar,  the divided attack 
laminar and the divided attack using Abrams'  stresses. 

The effect o f  the changing pressure on the moderate wavelength stability is shown in figure 9(a). 
This figure simulates (and exaggerates) the effect o f  a compressible gas in a long pipeline where 
the gas flow rate is constant but pressure changes lead to changes in the liquid height and gas 
velocity. It is seen that as the pressure decreases, the growth rate increases dramatically because 
the increased gas velocity causes greater interracial shear. Figure 9(b) shows that the curves can 
be partially collapsed by using non-dimensional wavenumber and a growth rate made dimension- 
less with the friction velocity and liquid depth. 

The overall effect o f  the conservative forces gravity and surface tension can be determined from 
figure 10 where the speed and growth rate are plotted for g = 980cm/s  2 and g = 0 while 
S = 72 dyne/cm and then for g = 980 cm/s 2 and S = 0. The wave speed for g = 980 cm/s 2 is much 
larger at low wavenumber than for g = 0 because gravity is the restoring force that causes the 
disturbance to travel--as  opposed to remaining stationary. The difference in speed explains the 
growth curve differences. I fg  = 0, growth of  long wavelength waves is opposed only by the viscous 
action of  the bottom wall. Slower waves encounter less viscous resistance and therefore have larger 
growth rates. For g = 980 cm/s 2, the higher wave velocity and the direct action of  gravity as a 
restoring force lead to a much lower growth rate. As the wavenumber is increased, surface tension 
becomes the dominant restoring force and the speeds and growth curves approach each other. 
Surface tension is responsible for increasing the wave speed at increasing wavenumber. The 
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Figure 9. (a) Effect of pressure on growth curve for constant mass flow rate (dimensional). (b) Effect of 
pressure on growth curve for constant mass flow rate shown in dimensionless variables. 

increased speed leads to more  d iss ipa t ion  and therefore  a lower g rowth  rate than  if  surface tension 
were not  present .  No te  tha t  surface tension is not  needed to stabil ize waves in the range o f  the peak  
g rowth  rate.  The  g rowth  curve for S = 0 eventual ly  turns  upward ,  but  waves do  not  become 
uns tab le  unless the wavelength  is less than  a b o u t  0.018 cm ( k * =  35,000/m). 

F igure  11 shows l inear  g rowth  curves for condi t ions  that  are not  typical .  It is i m p o r t a n t  for two 
reasons.  In figure 3, over  mos t  o f  the range,  shor t  waves are unstable  at  less severe condi t ions  than  
long waves. This  is the expected case. Consis tent  with figure 8, the w a ve numbe r  o f  the peak  is a b o u t  
o rde r  one. F igure  11 shows an example  o f  condi t ions  where long waves can become uns table  before  
shor t  waves. Second,  it is poss ible  that  bo th  long and shor t  waves are uns table  with an in te rmedia te  
s table  region.  The second po in t  is re levant  to the quest ion o f  energy t ransfer  th rough  the wave 
spec t rum.  I f  energy t ransfer  occurs  by non- l inear  in teract ions ,  exper iments  and  theory  show that  
it is difficult to excite a s table mode.  Thus  s table in te rmedia te  modes  can interfere with the energy 
t ransfer  f rom shor t  waves to long waves. This  process  may  be i m p o r t a n t  in the genera t ion  o f  roll  
waves and o ther  long d i s tu rbances  because the growth  rate in the long wave region is never as large 
as typical  shor t  wave values.  



748 w . C .  K U R U  et al. 

0,35 

0.30 

0.25 

0.20 

0.15 

I J 
0.10 

s 

0.05 " ~ - 

0 . 0 0  I 
0 2OO 

5 1 "~ '~ '  
ss I ~ 

o - -  ...... ~.=-.-.L" - .  

--__ 9.8 m/s 2 , S = 72 dyne/cm 
0. N/m 
0. m/s 2 

I I I 
400 600 800 1000 

w a v e n u m b e r  (m 1) 

R L = 1 5 ] 
R G = 8000 ] 
~1 = 10 cP J 
2/P~ = 11850 l 
I t = 0 .685 cm[ 

-5 

E ¢) 

-10 

-15 
0 

gSg=980== 0.0 dyne/Cmem/s 2cm/s 2 , q  S = 72 dyne/cml I ~ .  " ~ " ~ i  

200 400 600 800 1000 

wavenumber (m 1) 
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for low wavenumber. The effect of surface tension is less dramatic. 

The  results  above  show the impor t ance  o f  the fr ict ion velocity and l iquid height on stabil i ty.  Thus 
it might  be expected that  some simple re la t ion exists that  could  be used to corre la te  the neutral  
s tabi l i ty  curve for shor t  waves even though six pa ramete r s  govern the process.  To test this 
hypothesis ,  we have p lo t ted  the neutral  curve for shor t  waves for several different sets o f  fluid 
proper t ies  and  channel  heights. It is seen that  get t ing a simple cor re la t ion  is unlikely because the 
v* versus D~ plots  are not  monoton ic .  Appa ren t ly ,  a l though  the required gas flow rate usually 
decreases with increasing l iquid flow, the reduced gas space leads to a higher  interfacial  shear. 
F igure  12 also shows that  changing  surface tension does not  move the neutra l  curve very much.  
This is expected if the viscosity ra t io  is sufficiently different f rom unity. 

F igure  13 shows a cor re la t ion  o f  growth  rates predic ted  f rom calcula t ion  for mode ra t e  waves 
p lo t ted  as ~oj D~/v*, where m~ is the d imens iona l  wave growth  rate,  versus (RG -- R c c r , ) / R c , , .  The 
reduced gas Reyno lds  number  conta ins  R c , ,  which is the value of  RG for the onset  o f  waves. In 
this p lo t  all the condi t ions  do not  lie on the same line. However ,  the slope is close to uni ty on this 
l o g - l o g  plot ,  so it is easy to de te rmine  changes in growth  rates with RG. 

4. D I S C U S S I O N  

4.1. Accuracy of  simplified models 

The results  in figures 3-5 show clearly that  the one-d imens iona l  m o m e n t u m  model ,  which omits  
the effects o f  i m p o r t a n t  velocity derivat ives,  and  Ke lv in -He lmho l t z ,  which omits  the effects of  
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Figure 11. Condi t ions  where  long  waves  are m o r e  unstable  than short waves .  

interfacial shear and liquid inertia, do not accurately predict linear stability o f  interfacial waves 
for either long or moderate wavelengths. It is probably possible to correct these in certain regions 
to match the exact calculations but it is not clear if this would be a worthwhile exercise. It is 
relatively easy to implement all the procedures that we have used to obtain solutions of  the exact 
equations so it is probably best to base future studies on the complete differential equations. One 
point is clear, if the simplified models show agreement with, for example, transition to annular flow 
or slugging, then the observed phenomena are not the direct result o f  a linear instability, or the 
agreement is fortuitous because of  limited parameter range or length of  flow system. 
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Figure 13. Plot of dimensionless growth rate and reduced gas Reynolds number. 

4.2. Effect of  turbulence 

The results presented here demonstrate that the effect of  turbulent flow is largely through 
changes in the base state. For fixed R C, the friction velocity and pressure drop are higher 
and the liquid thickness is lower for turbulent flow. If the liquid height and friction velocity 
are the same as laminar flow, the effect of turbulence is not large. Some effects could be 
missed because of a lack of a two-phase code that possesses Reynolds stresses, however 
the similarity of  the growth curves in figure 8 argues against this. It is likely that the 
primary quantitative effect of turbulence is to skew the growth curve to slightly higher wave- 
numbers. 

For design purposes, stability of the long wave region can be predicted from either the two-layer 
laminar or the polynomial profiles as long as RG can be adjusted to give the correct interracial shear. 
The imposed stress model is recommended only if the viscosity and density ratios or RL are 
sufficiently small. For moderate wavelength waves, the divided attack approach is not very accurate 
and any improvements in the representation of the gas flow by using a turbulence model are not 
likely to be realized. A better method for dealing with stability of turbulent flow is desirable, but 
does not seem essential, so that primary effort in the short term should probably concentrate on 
correctly predicting the base state. 

4.3. Stability of  moderate wavelength wa~es 

I f  a flow is stable to both long and moderate wavelength disturbances, the regime will remain 
stratified. Figure 5 is useful for long wave stability but it appears that moderate to short wave 
stability can be calculated only from the complete equations. It is noted that high wavenumber, 
high RL approximations such as Cohen & Hanrat ty  (1965) fail for moderate wavenumbers that 
are fastest growing. Moderate wavelength waves roughen the surface and increase pressure and 
interfacial mass transfer rates. Methods that estimate the amplitude of waves may be based on 
equations for individual modes (e.g. Jurman et al. 1992) or equations for predicting the entire 
spectrum (e.g. Bruno & McCready 1988). Linear growth rate is the most important input parameter 
for each method and it can be obtained from figure 13. 
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4.4. Importance o f  long wave stability on f low regime transition 

Fan et al. (1993) observed period doubling of  the primary wave peak for conditions close to slug 
formation for UsG < 3 ms/s. This is caused by a non-linear mechanism where the fundamental wave 
is traveling close to the speed of the subharmonic. Results from Jurman et al. (1992) suggest that 
while a subharmonic can be generated even if it is linearly stable, it will not grow to large amplitude. 
Thus, it is likely that the subharmonic is unstable in Fan's experiments. If the conditions for slug 
generation from Fan et al. (1993) are plotted on figure 8, they lie in the range of  the 
ordinate = 0.13-0.3 and abscissa = 0.015-0.7; all of  these conditions are unstable to long waves. 
For most situations, the shape of  the growth curve is such that if it is unstable to both long and 
moderate waves, it is unstable to all intermediate wavenumbers (figure 11 is an exception). Thus 
for slugs to form by the period doubling and growth mechanism seen by Fan et al. (1993), it is 
likely that the flow must be unstable to both long and moderate waves. It is also likely that anytime 
a flow is unstable to long wave disturbances, it will not remain stratified. For large liquid flow rates 
either slugs or bubbles will form when the liquid bridges the pipe diameter. For lower liquid rates 
roll waves will form and sufficient atomization will probably occur for the regime to be considered 
annular. Long wavelength waves can be stabilized to some extent by non-linear energy transfer to 
shorter waves, however, it is not likely that this mechanism could dissipate enough energy to 
stabilize a growing long wave disturbance unless its growth rate is extremely small. 

4.5. Effect o f  finite length on experimentally observed transitions 

For conditions near the observed transition to slug flow, the growth rate is (very) roughly linear 
in k up to close to the peak. Thus when the peak growth rate at --~200 m ~ is 5 s ~, the growth 
rate of a 1.0-~ wavenumber mode would be only 0.025 s -~. For a typical wave velocity of say, 
0.6m/s, by linear growth it would take l l 0 m  for the wave to grow 100 times the original 
ampli tude--a value expected to make the disturbance visible. Non-linear energy transfer from 
shorter waves will shorten this distance somewhat, but these numbers suggest that Fan et al.'s 
warning about the effect of length on slug transition is well founded. If it is necessary to assure 
that slugs or roll waves will not form no matter how long the distance is, the flow probably must 
be stable to all disturbances except possibly for a small band at moderate wavenumbers. 
Experiments of Jurman et al. (1992) show how the fastest moderate wavenumber peak is stabilized 
by overtone formation. However as mentioned above, no experimental evidence exists to show that 
a long wavelength wave can be stabilized except by breaking. 

4.6. Design recommendations 

Just as it is necessary to know if a flow is laminar or turbulent, it is essential to know if the 
interface of  a gas liquid flow is unstable. If the flow rates, fluid properties, liquid height and 
interfacial shear are known, a numerical calculation for a two-layer laminar flow with the gas height 
and/or velocity adjusted to match the correct liquid depth and friction velocity should give 
satisfactory results for either laminar or turbulent gas flows. Liquid turbulence was not examined 
here but its main effect is also likely to be through the base state. Calculation of a single growth 
curve in figure 8 takes about 5 x l 0  9 floating point operations. This is only a few minutes on a 
modern workstation. If a complete calculation is not possible and there is some experimental 
estimate of the Rc of the onset of waves, it is possible to estimate growth rates from figure 13. 
Steady waves with slopes less than about 0.4 will have amplitudes that scale roughly as the square 
root of the growth rate. Fortunately, stability of  waves with wavelengths long compared to the 
channel height can be determined without accurate knowledge of the base state. Figure 5 gives 
reasonably general stability boundaries. Note that it is not possible for a linear theory to determine 
if unstable wave modes will lead to slug flow as opposed to annular flow. However, the data and 
discussion by Lin & Hanrat ty (1986) show that the liquid depth/channel height ratio plays a 
significant role in deciding whether annular or slug flow will occur. 

5. C O N C L U S I O N S  

Linear stability of channel flow is best predicted using the exact differential formulation and a 
solution procedure that is valid for all wavenumbers because the peak growth rate usually occurs 
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at dimensionless wavenumber of order unity. Neither the Kelvin-Helmholtz model nor the integral 
momentum equation approach correctly predicts the onset of disturbances in most cases. The 
discrepancies in the models are due to more than differences in the calculation of interfacial 
perturbation stress components and differences in the base states. The effect of gas phase turbulence 
is modeled with both a polynomial velocity profile and a separated phase approach that employs 
measured stress correlations for boundary conditions. In both cases the primary effect of turbulence 
is to cause a higher interfacial stress and larger pressure drop than laminar flow. There is no obvious 
first order effect on stability or growth rates caused by turbulence per se based on the models 
used in this study; a stability procedure that accurately incorporates Reynolds stresses is needed 
to verify this statement. It is found that long wave stability can be correlated well using 
density-corrected gas and liquid Froude numbers. Furthermore, the peak growth rate for moderate 
wavelength waves increases as a scaled gas Reynolds number to the first power. Under conditions 
where unstable moderate wavelength waves appear within a couple of meters, it can take 20-50 
times this length for slowly growing long wavelength waves, which can destroy regime stability, 
to appear. 
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